| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219 | 
							- <?php
 
- namespace BN;
 
- use \Exception;
 
- use \BI\BigInteger;
 
- class Red
 
- {
 
-     public $m;
 
-     function __construct($m) {
 
-         if( is_string($m) )
 
-             $this->m = Red::primeByName($m);
 
-         else
 
-             $this->m = $m;
 
-         if( !$this->m->gtn(1) )
 
-             throw new Exception("Modulus must be greater than 1");
 
-     }
 
-     public static function primeByName($name)
 
-     {
 
-         switch($name) {
 
-             case "k256":
 
-                 return new BN("ffffffff ffffffff ffffffff ffffffff ffffffff ffffffff fffffffe fffffc2f", 16);
 
-             case "p224":
 
-                 return new BN("ffffffff ffffffff ffffffff ffffffff 00000000 00000000 00000001", 16);
 
-             case "p192":
 
-                 return new BN("ffffffff ffffffff ffffffff fffffffe ffffffff ffffffff", 16);
 
-             case "p25519":
 
-                 return new BN("7fffffffffffffff ffffffffffffffff ffffffffffffffff ffffffffffffffed", 16);
 
-             default:
 
-                 throw new Exception("Unknown prime name " . $name);
 
-         }
 
-     }
 
-     public function verify1(BN $num)
 
-     {        
 
-         if (assert_options(ASSERT_ACTIVE)) assert(!$num->negative()); //,"red works only with positives");
 
-         assert($num->red); //, "red works only with red numbers");
 
-     }
 
-     public function verify2(BN $a, BN $b)
 
-     {
 
-         if (assert_options(ASSERT_ACTIVE)) assert(!$a->negative() && !$b->negative()); //, "red works only with positives");
 
-         assert($a->red && ($a->red == $b->red)); //, "red works only with red numbers");
 
-     }
 
-     public function imod(BN &$a) {
 
-         return $a->umod($this->m)->_forceRed($this);
 
-     }
 
-     public function neg(BN $a)
 
-     {
 
-         if( $a->isZero() )
 
-             return $a->_clone();
 
-         return $this->m->sub($a)->_forceRed($this);
 
-     }
 
-     public function add(BN $a, BN $b)
 
-     {
 
-         $this->verify2($a, $b);
 
-         $res = $a->add($b);
 
-         if( $res->cmp($this->m) >= 0 )
 
-             $res->isub($this->m);
 
-         return $res->_forceRed($this);
 
-     }
 
-     public function iadd(BN &$a, BN $b)
 
-     {
 
-         $this->verify2($a, $b);
 
-         $a->iadd($b);
 
-         if( $a->cmp($this->m) >= 0 )
 
-             $a->isub($this->m);
 
-         return $a;
 
-     }
 
-     public function sub(BN $a, BN $b)
 
-     {
 
-         $this->verify2($a, $b);
 
-         $res = $a->sub($b);
 
-         if( $res->negative() )
 
-             $res->iadd($this->m);
 
-         return $res->_forceRed($this);
 
-     }
 
-     public function isub(BN &$a, $b)
 
-     {
 
-         $this->verify2($a, $b);
 
-         $a->isub($b);
 
-         if( $a->negative() )
 
-             $a->iadd($this->m);
 
-         return $a;
 
-     }
 
-     public function shl(BN $a, $num) {
 
-         $this->verify1($a);
 
-         return $this->imod($a->ushln($num));
 
-     }
 
-     public function imul(BN &$a, BN $b) {
 
-         $this->verify2($a, $b);
 
-         $res = $a->imul($b);
 
-         return $this->imod($res);
 
-     }
 
-     public function mul(BN $a, BN $b) {
 
-         $this->verify2($a, $b);
 
-         $res = $a->mul($b);
 
-         return $this->imod($res);
 
-     }
 
-     public function sqr(BN $a) {
 
-         $res = $a->_clone();
 
-         return $this->imul($res, $a);
 
-     }
 
-     public function isqr(BN &$a) {
 
-         return $this->imul($a, $a);
 
-     }
 
-     public function sqrt(BN $a) {
 
-         if ($a->isZero()) 
 
-             return $a->_clone();
 
-         $mod3 = $this->m->andln(3);
 
-         assert($mod3 % 2 == 1);
 
-         // Fast case
 
-         if ($mod3 == 3) {
 
-             $pow = $this->m->add(new BN(1))->iushrn(2);
 
-             return $this->pow($a, $pow);
 
-         }
 
-         // Tonelli-Shanks algorithm (Totally unoptimized and slow)
 
-         //
 
-         // Find Q and S, that Q * 2 ^ S = (P - 1)
 
-         $q = $this->m->subn(1);
 
-         $s = 0;
 
-         while (!$q->isZero() && $q->andln(1) == 0) {
 
-             $s++;
 
-             $q->iushrn(1);
 
-         }
 
-         if (assert_options(ASSERT_ACTIVE)) assert(!$q->isZero());
 
-         $one = (new BN(1))->toRed($this);
 
-         $nOne = $one->redNeg();
 
-         // Find quadratic non-residue
 
-         // NOTE: Max is such because of generalized Riemann hypothesis.
 
-         $lpow = $this->m->subn(1)->iushrn(1);
 
-         $z = $this->m->bitLength();
 
-         $z = (new BN(2 * $z * $z))->toRed($this);
 
-         while ($this->pow($z, $lpow)->cmp($nOne) != 0) {
 
-             $z->redIAdd($nOne);
 
-         }
 
-         $c = $this->pow($z, $q);
 
-         $r = $this->pow($a, $q->addn(1)->iushrn(1));
 
-         $t = $this->pow($a, $q);
 
-         $m = $s;
 
-         while ($t->cmp($one) != 0) {
 
-             $tmp = $t;
 
-             for ($i = 0; $tmp->cmp($one) != 0; $i++) {
 
-                 $tmp = $tmp->redSqr();
 
-             }
 
-             if ($i >= $m) {
 
-                 throw new \Exception("Assertion failed");
 
-             }
 
-             if ($m - $i - 1 > 54) {
 
-                 $b = $this->pow($c, (new BN(1))->iushln($m - $i - 1));
 
-             } else {
 
-                 $b = clone($c);
 
-                 $b->bi = $c->bi->powMod(1 << ($m - $i - 1), $this->m->bi);
 
-             }
 
-             $r = $r->redMul($b);
 
-             $c = $b->redSqr();
 
-             $t = $t->redMul($c);
 
-             $m = $i;
 
-         }
 
-         return $r;    
 
-     }
 
-     public function invm(BN &$a) {
 
-         $res = $a->invm($this->m);
 
-         return $this->imod($res);
 
-     }
 
-     public function pow(BN $a, BN $num) {
 
-         $r = clone($a);
 
-         $r->bi = $a->bi->powMod($num->bi, $this->m->bi);
 
-         return $r;        
 
-     }
 
-     public function convertTo(BN $num) {
 
-         $r = $num->umod($this->m);
 
-         return $r === $num ? $r->_clone() : $r;
 
-     }
 
-     public function convertFrom(BN $num) {
 
-         $res = $num->_clone();
 
-         $res->red = null;
 
-         return $res;
 
-     }
 
- }
 
- ?>
 
 
  |